
Abstract The microstructure evolution during grain

growth in magnetically anisotropic materials can be

affected by a magnetic field due to an additional driving

force for grain boundary motion which arises from a

difference in magnetic free energy density between dif-

ferently oriented grains. Therefore each grain of a

polycrystal, exposed to a magnetic field, is inclined to

grow or to shrink by a magnetic force depending on the

orientation of the respective grain and its surrounding

neighbors with regard to the field direction. A theoret-

ical analysis of the grain growth kinetics in the presence

of an external magnetic field reveals that magnetically

affected grain growth may result in an orientation dis-

tribution that favours grains with a lower magnetic free

energy density. As it is experimentally demonstrated on

polycrystalline zinc, titanium and zirconium, the

crystallographic texture in magnetically anisotropic

non-magnetic materials can be effectively changed and

controlled by means of annealing in a magnetic field.

EBSD-analysis revealed that the observed asymmetrical

texture after magnetic annealing is due to a large extent

to a significant difference in the number of grains that

make up different texture components. The results of

computer simulations of magnetically affected grain

growth in 2-D polycrystals are in a good agreement with

theoretical predictions and experimental findings.

Introduction

Properties of polycrystalline solids, in particular

mechanical ones, depend on the size and spatial ori-

entation of the grains inside. Both size and orientation

distribution of these grains are subjected to changes in

the course of grain growth after the completion of

primary recrystallization. Grain growth proceeds by

the migration of grain boundaries. An understanding

of the response of grain boundaries to exerted forces is

the key for an effective control of grain growth in

crystalline solids. Such an understanding is therefore

the basic requirement for a control of microstructure

and properties, indispensable for the design of ad-

vanced materials for various engineering applications.

The grain microstructure evolution can be influ-

enced by the application of an external field [1–3]. In

particular, grain boundary motion can be affected by a

magnetic field, owing to a driving force that arises in

the field due to a crystal magnetic anisotropy. In lit-

erature most experimental observations of magneti-

cally induced changes in recrystallization and texture

development relate to ferromagnetic materials [2].

However, magnetic field effects on microstructure

evolution are not restricted to ferromagnetics only. As

shown in the past by Mullins [4, 5] and confirmed in

our more recent bicrystalline experiments [6–9], also

grain boundaries in non-magnetic materials (i.e. para-

magnetic and diamagnetic) can be forced to move by a

magnetic driving force, induced by a crystallographic

anisotropy in magnetic susceptibility. Since this mag-

netic force does not depend on boundary properties

and can be determined accurately, measurements of

magnetically driven grain boundary motion gain access

to the absolute value of grain boundary mobility and its
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dependence on the grain boundary character [6–9].

Observations of magnetically induced selective grain

growth in locally deformed zinc single crystals pro-

vided unambiguous evidence that the microstructure

development in magnetically anisotropic non-magnetic

materials can be controlled by magnetic annealing [10,

11]. Further experiments on polycrystalline cold-rolled

zinc [12], titanium [13, 14] and zirconium [15] revealed

that magnetic annealing can cause significant changes

in the crystallographic texture of these materials. A

magnetic field can therefore be effectively utilized as

an additional degree of control of texture development

in crystalline non-magnetic solids. In the current paper

the microstructure evolution is addressed in non-mag-

netic materials during grain growth in the presence of

an external magnetic field.

Driving forces

The driving force p for grain boundary migration arises

if the boundary displacement is accompanied by a

decrease of the total free energy of the system G:

p = – dG/dV, where V is the volume swept by the

boundary during its displacement. The driving force

has therefore the dimension of energy per unit volume

which is equivalent to a force per unit area.

The driving force for boundary motion during grain

growth usually stems from the free energy of the

boundary itself. A curved boundary reduces its area

and therefore its free energy as it moves towards its

center of curvature. For a boundary of energy c with

radii of curvature in two perpendicular sections r1 and

r2 the driving force can be expressed as

pc ¼ c
1

r1
þ 1

r2

� �
¼ c � j; ð1Þ

where j is a local boundary curvature.

A way to obtain an artificial driving force is to create

a difference in free energy density across the boundary

between two grains. For example, this can be accom-

plished by the application of a stress field to a poly-

crystal with an anisotropic Young’s modulus or by

exposing a polycrystal with an anisotropic dielectric

susceptibility to an electrostatic field. The coupling of

an appropriately directed external field with an aniso-

tropic material’s property will generate a free energy

difference between adjacent grains that creates a

driving force for boundary displacement. This driving

force does not depend on boundary properties and

moves a boundary from a grain with lower free energy

towards one with a higher free energy.

In particular, such a condition can be obtained by

the action of an external magnetic field on a crystalline

material with an anisotropic magnetic susceptibility.

As it has been initially shown by Mullins [4], the

magnetic driving force pm
b on the boundary between

two adjacent uniaxial crystals with different suscepti-

bilities along the field direction and hence different

magnetic energy densities, is given by

pb
m ¼

1

2
l0D

2 cos2 h1 � cos2 h2

� �
ð2Þ

where l0 is the magnetic constant, Dv ¼ vk

��� ���� v?j j is

the difference in susceptibility parallel vk and perpen-

dicular v? to the principal (or c) axis of the crystal, H is

the magnetic field strength, h1 and h2 are the angles

between the direction of the magnetic field and the

principal axes of both neighboring grains.

The magnetic driving force reaches its maximum

pmax
m ¼ l0DvH2=2, when the angles between the field

and the c axes in both adjacent grains are h1 = 0 and

h2 = 90� or vice versa. The sign of pb
m depends on the

magnetic anisotropy of the material (Dv) and the

asymmetry of the spatial orientation of both neigh-

boring grains with respect to the magnetic field direc-

tion. For a zero magnetic driving force the grain

orientations do not need to be identical but merely to

satisfy h1 = h2.

Being exposed to a magnetic field each grain of a

polycrystal experiences a total magnetic driving force

that can be expressed as the difference between the

magnetic free energy density of this grain x and an

average magnetic free energy density �x of its neigh-

boring grains pm ¼ x� �x. According to Eq. 2 this can

be also written as

pm ¼
1

2
l0DvH2 cos2 h�

P
n

cos2 hn

n

0
@

1
A; ð3Þ

where h and hn are the angles between the field

direction and principal axes of the considered grain

and its n neighboring grains.

The dependence of the magnetic driving force on

the grain orientation explains why a magnetic field

influences the orientation distribution in a polycrystal,

or more specifically why it affects an existing texture or

produces a preferred orientation in a structure with

initially randomly oriented grains. Assuming Dv > 0,

for a grain surrounded by its neighboring grains such

that cos2 h� 1=n �
P
n

cos2 hn\0, the magnetic energy

density will be lower than the average energy density

of the adjacent grains ðx\�xÞ and in consequence the
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magnetic driving force (pm < 0) tends to expand this

grain. For an aggregate of randomly oriented grains,

whose angles between the c-axes and the field are de-

scribed by a distribution P hð Þ ¼ 1=2 sin h [16], the

magnetic force can be expressed as

prandom
m ¼ 1

2
l0D

2 cos2 h� 1

2

Zp

0

sin h � cos2 h dh

0
@

1
A

¼ 1

2
l0DvH2 cos2 h� 1

3

� � ð4Þ

Therefore, assuming Dv > 0 as this is the case for Zn,

Ti and Zr, grains with h\ arccos 1
ffiffiffi
3
p
ffi 55 will initially

be favored for growth, whereas grains with h > 55� will

be inclined to shrink by a magnetic driving force.

Kinetic equations

According to an approach proposed by Hillert [17], the

rate of grain size change (dR/dt) under a curvature

driving force can be expressed as

dR

dt
¼ ambc

1
�R
� 1

R

� �
; ð5Þ

where the grain size is expressed by the radius R of a

circle or sphere of the same area or volume, respec-

tively, c and mb are the grain boundary energy and

mobility (assumed equal for all grain boundaries) and a
is a dimensionless constant. The mean grain size �R

denotes a critical size, such that at any time grains with

R[�R grow (dR/dt > 0), grains with R\�R shrink

ðdR=dt\0Þ and grains with R ¼ �R keep their size

ððdR=dtÞR¼�R ¼ 0Þ.
For the rate of grain size change under a magnetic

driving force only one can write

dR

dt
¼ �mbpm ð6Þ

According to Eq. 6 grains with a higher magnetic

energy density ðpm ¼ x� �x[0Þ shrink, whereas grains

with x\�x expand.

The forces acting on a grain boundary during grain

growth can safely be assumed additive [18, 19]. A

summation of Eqs. 5 and 6 leads therefore to a kinetic

equation for the case of a simultaneous action of both

curvature and magnetic driving forces

dR

dt
¼ ambc

1
�R
� 1

R

� �
�mbpm ð7Þ

Obviously, a magnetic driving force superimposed

to a curvature one during grain growth changes the size

Rth of grains which neither grow nor shrink. This

threshold size can be derived from

dR

dt

����
R¼Rth

¼ ambc
1
�R
� 1

Rth

� �
�mbpm ¼ 0; ð8Þ

and reads

Rth ¼
�R

1� �Rpm

ac

ð9Þ

According to Eq. 9, the threshold grain size for

grains with a lower magnetic free energy density

ðpm ¼ x� �x\0Þ is reduced to R0th\�R (Fig. 1).

Hence in contrast to a purely curvature driven grain

growth, grains with a size R0th\R\�R, which other-

wise would shrink, will now expand due to the

presence of a magnetic field. Opposite to this the

threshold grain size for grains with a higher magnetic

free energy density ( x[�xÞ is increased to R00th[�R

and therefore, grains with �R\R\R00th, which other-

wise would expand, will now shrink. From this it can

be predicted that during magnetic annealing a smal-

ler grain with pm < 0 could grow at the expense of a

bigger one for which pm > 0.

The above analysis reveals that the texturing influ-

ence of a magnetic field is not only due to an increase

in grain growth or shrinking rate, but also due to a

change in fractions of differently oriented grains in a

polycrystal. As a consequence of a shift in the thresh-

old grain size in the field the number of growing grains

with such orientation relationships to the field and

their neighbors that they experience pm < 0, will be

larger than without field. On the other hand, more

grains will shrink and disappear in the field than

without it, for which due to their orientation relation-

0

'
thR

''
thR

R

thR

mp

Fig. 1 Schematic dependence of a threshold grain size Rth on a
magnetic driving force pm, as given by Eq. 9
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ships a force pm > 0 is induced. Obviously this must

result in an increase or decrease of differently oriented

grain fractions.

An alternative topological approach for grain

growth in 2D systems was developed by Mullins [20],

who applied von Neumann’s description of a 2D soap

froth [21] to curvature driven grain growth. Also here

all boundaries were assumed to possess equal energy c
and mobility mb, and considered to be in equilibrium at

their triple junctions. A possible dragging impact of

triple junctions on the boundary motion was disre-

garded. According to this approach there is a unique

relation between the rate of area change dS/dt and the

topological class n (number of next neighbors) of a

grain. Grains with n > 6 will grow, and those with

n < 6 will disappear [20].

dS

dt
¼ cmb � p

3
n� 6ð Þ ð10Þ

It can be easily shown that this relation will be

violated in the presence of a magnetic field. Consider a

2D grain of area S bordered by curved grain bound-

aries. If this grain shrinks, a boundary element D‘
moving with a normal velocity v will sweep in a time

interval Dt an area element DS ¼ v � Dt � D‘. Thus the

rate of the area change for the whole grain can be

defined by

dS

dt
¼ �

I
v d‘ ð11Þ

In the presence of a magnetic field v is determined

by both curvature and an additional magnetic driving

force v ¼ cmb � jþmbpmÞ. With the boundary curva-

ture j, defined as a change of the tangential angle /
along the boundary j ¼ du=d‘, the rate of the grain

area change then reads

dS

dt
¼ �

I
ðcmb � jþmbpmÞd‘

¼ �cmb

I
du�mbpm

I
d‘

ð12Þ

For a completely continuous grain boundary the

first integral
H

du in the right part of Eq. 12 would

equal 2p. However due to a discontinuous change of

the angle at every triple junction a half of the equi-

librium angle 2p/3 has to be substracted from the

total value of 2p for each junction [20]. The second

integral
H

d‘ over the grain is equal to the

grain perimeter P. Consequently Eq. 12 can be sim-

plified as

dS

dt
¼ mb

pc
3
ðn� 6Þ � pmP

h i
ð13Þ

Switching to an equivalent grain size (radius R of a

circular grain of the same area) and substituting S = p
R2 and P = 2p R we arrive at

dR

dt
¼ mb

c
R

n

6
� 1

� �
� pm

h i
ð14Þ

The topological class nth of stable grains of size Rth

can now be derived from the condition

mb
c

Rth

nth

6
� 1

� �
� pm

	 

¼ 0; ð15Þ

and reads

nth ¼ 6 1þ RthPm

c

� �
ð16Þ

According to Eq. 14, the topological class of stable

grains with a lower magnetic free energy density than

their immediate surroundings, (pm < 0), is reduced to

nth < 6 and vice versa raised to nth > 6 for grains with

a higher energy (pm > 0) (Fig. 2).

Substituting the expression for Rth (Eq. 9) into

Eq. 16 and taking into account that for a 2D grain

system a ffi 0:5 [17], one finds for the threshold topo-

logical class

nth ¼ 6
c� �Rpm

c� 2�Rpm

� �
ð17Þ

A possible absolute deviation of nth from n = 6 can

be estimated for the practical case of grain growth in a-

titanium ðDvTi ¼ 1:18 � 10�5[22]) in a field of 19.4 T

[13]. According to Eqs. 2 and 3 the magnetic driving

Fig. 2 Topological class of stable grains versus mean grain size,
as given by Eq. 17
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force for such estimation can be taken as pm ffi 103 J/

m3. For a typical grain boundary energy c in Eq. 17 of

0.4 J/m2 and a mean grain size of about 80 lm (see

Sect. 3 of the current paper), i.e. �R ffi 40 lm, the

threshold topological class for stable grains with

pm = – 1.0 kJ/m3 amounts 5.5 and for grains with

pm = + 1.0 kJ/m3 – 6.75.

Magnetically affected grain growth: experiment

As has been shown in the previous section, a magnetic

driving force superimposed to a curvature driving force

during grain growth can bias the microstructure evo-

lution with respect to size and orientation distribution

of grains. Experimentally it has been demonstrated

first on grain growth in zinc [12]. Annealing of cold-

rolled zinc sheet without a field results in a regular

texture with two symmetrical components in the {0002}

pole figure (Fig. 3a). If, however, the annealing occurs

in a magnetic field and the sample is specifically ori-

ented with respect to the field direction, one or another

texture component can be amplified that eventually

results in a single-component texture (Fig. 3b, c).

Similar results, i.e. strengthening of one and weak-

ening of another component in a sharp two-component

texture, were observed in further experiments on cold-

rolled a-titanium [13, 14] and, quite recently, cold-rol-

led zirconium [15]. The specimens during magnetic

annealing were oriented in such a manner that the c-

axes of grains which make up one texture component

(in zinc around the orientations {/1 = 90�, F = 20�,

"/2} (Fig. 3b) or {/1 = 270�, F = 20�, "/2} (Fig. 3c)

[12], in titanium – {/1 = 180�, F = 30�, "/2} (Fig. 4)

[14] or {/1 = 0�, F = 30�, "/2} [11]) were directed

perpendicular to the field direction. With Dv > 0 for

zinc, titanium and zirconium, the magnetic free energy

density of many grains in this component approaches a

minimum that results in an additional driving force for

their growth (pm < 0).

The intensity of a texture peak measured by X-ray

diffraction can be estimated as the product of the mean

area and the number (or fraction) of grains which

make up that peak. In order to separate the contribu-

tion of these parameters to the texture changes, indi-

vidual orientations were measured by electron back

scattering diffraction in a scanning electron microscope

[11, 14]. The results revealed that the mean size of

grains for which pm < 0 (more intense component {0�,

30�, "/2} in [14] (Fig. 4)) only slightly exceeds the

mean size of grains of the another component. In

contrast, fully in accordance with predictions of the

previous section, fractions of grains in both texture

components were found to be drastically different

(0.32–0.65 after 15 min annealing at 750 �C in a field of

19.4 T [14]). As was shown above, the threshold grain

size Rth is increased in the high energy component

(pm > 0), whereas it is decreased in the low energy

component. As a result, more grains of the high energy

component shrink and disappear as it would be the

case without a magnetic field. Vice versa, more grains

of the low energy component (pm < 0) will grow in the

presence of a magnetic field. From this it can be con-

cluded that the texture asymmetry caused by a mag-

netic field stems to a great extent from this difference

in grain fractions.

Magnetically affected grain growth: 2D computer
simulations

In order to prove the validity of theoretical predictions

and to analyze experimental results by an independent

method we employed computer simulations of 2D

grain growth. The simulation algorithm is based on

vertex and front-tracking models which are most

appropriate for curvature and boundary tension driven

grain growth [23–26]. The grain structure in this algo-

rithm is represented by differently oriented grains,

separated by boundaries that intersect at triple

5.0
30.3

5.0 21.8

RD

TD

7.4

44.3
41.2

43.6

RD

TD

RD

TD

77.059.9

7.7

a b cFig. 3 {0002} pole figures
of 99%-rolled zinc–1.1%
aluminum sheet samples (a)
after annealing at 390 �C
without a magnetic field, in a
magnetic field of 32 T with
rolling direction (RD) tilted
by +19� to the field around
transverse direction (TD) (b)
and tilted by – 19� to the field
around TD (c) [12]
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junctions (real vertices). The grain boundaries in turn

consist of points (virtual vertices) along the boundary

length according to the boundary curvature [27].

During grain growth without an external field all

boundary points move under a curvature driving force

pc in a normal direction according to the local bound-

ary curvature (Eq. 1). In the presence of a magnetic

field the equation v = mbp of boundary motion is

solved for all boundary points with a driving force

equal to the sum of curvature and magnetic driving

forces p = pc + pm, where pm is calculated according to

Eq. 2 [27].

In Figs. 5 and 6 the simulated grain structure evo-

lution of a 2D polycrystal is presented. The micro-

structure of this polycrystal was developed under a

pure curvature driving force. Figure 5 shows the com-

puted time dependence of the normalized mean grain

area. As seen, the mean grain area increases linearly

with annealing time. According to theory this behavior

is characteristic for normal grain growth driven by a

change of the grain boundary energy due to a reduc-

tion of the grain boundary area. Furthermore it was

assessed whether the model reproduces a topological

microstructure evolution according to the von Neu-

mann–Mullins relation (Eq. 10). The computed

dependence of the rate of grain area change dS/dt on

the topological class n of a grain is shown in Fig. 6. The

agreement between the classical relation (Eq. 10) dS/dt

� 1.047 mbc(n – 6) [20] and the linear fit of the simu-

lated results dS/dt = 1.044 mbc(n – 6.0029) is remark-

able. Therefore, the results shown in both Figs. 5 and 6

convincingly demonstrate the validity of the used

simulation model to study grain growth in 2D homo-

geneous systems.

For simulations of magnetically affected grain

growth the experimental conditions were reproduced.

The initial microstructure was reconstructed from

individual orientation data (EBSD mapping) measured

on a recrystallized Ti sample with a mean grain size of

42 lm. Grain boundary energy and mobility in the

current simulations were assumed to be uniform. A

magnetic field was applied perpendicular to the rolling

direction of the specimen and tilted to its transverse

direction by 30�, as indicated by a cross in the pole

figure in Fig. 7b. Therefore, according to our under-

standing, depending on their surroundings, many

Intensity levels: 1.0 3.0 6.0 9.0
(max 17.2)   12.0  15.0 17.0

RD{0002}

TD

RD{0002}

TD

Constant ϕ
1= 180

ϕ
2

Φ

0
0

90

60

2.0

2.0

4.07.0

Constant ϕ
1= 180˚

ϕ
20

0

90

60

2.0

2.0

4.07.0

7.0

Constant ϕ
1 = 0˚

ϕ
2

Φ

0
0

90

60

4.0

2.0

4.0

2.0

7.0

11.0

11.0

16.0

7.0

Constant ϕ
1 = 0˚

ϕ
2

Φ

0
0

90

60

Constant ϕ
1 = 0˚

ϕ
2

Φ

0
0

90

60

4.0

2.0

4.0

2.0

7.0

11.0

11.0

16.0

ba cFig. 4 {0002} pole figure (a),
u1 ¼ 180 (b) and u1 ¼ 0 (c)
ODF (orientation distribution
function) sections for 75%
cold-rolled Ti sheet after
15 min magnetic annealing at
750 �C in a magnetic field of
19.4 T [14]

Fig. 5 Computed normalized grain area S(t)/S(0) versus time
Fig. 6 The rate of grain area change dS/dt as function of the
topological class n of a grain
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grains of the {0�, 30�, "/2} component are expected to

experience an additional on growth directed magnetic

driving force (pm < 0), since their c-axes are aligned

nearly normal to the field direction.

Figures 7–9 show the simulation results. Excellent

agreement between simulations and experiment was

obtained in almost all respects. Specifically, after

annealing at zero field the simulated texture remains

symmetrical, while after magnetic annealing one

texture component (in the current case {0�, 30�, "/2}

with c-axes perpendicular to the field) becomes

much stronger than the other component. Further,

as shown in Fig. 8, the grain fraction of the energeti-

cally advantaged component (pm < 0) rises during the

annealing in the field, whereas the grain fraction of the

other component decreases.

The simulations also fully confirm the theoretical

predictions concerning the magnetically affected grain

topology. According to the analysis given in the

‘Driving forces’ section (Eqs. 12–17), the von Neu-

mann–Mullins relation is violated in the presence of an

external magnetic field: grains with the topological

class n = 6 do not remain stable anymore. Depending

on their orientation and orientation of their direct

neighbors with respect to the field direction, all grains

including those with topological class n = 6 become

either favored or disfavored by a magnetic field. As a

consequence, grains with n = 6 in favorable orienta-

tions grow, whereas grains with n = 6 in unfavorable

configurations shrink (Fig. 9).

Figure 10 demonstrates that, although growth

kinetics is distinctly different for differently oriented

grains, the total grain growth kinetics is not signifi-

cantly affected by a magnetic field. However, the

simulations shown in Figs. 8 and 9 substantiate that a

magnetic field not only slows down or increases the

growth rate of differently oriented grains, but also

changes the grain microstructure of 2D polycrystals.

Summary

In addition to a curvature driving force during grain

growth, a magnetic driving force arises in a polycrys-

talline solid with anisotropic magnetic susceptibility

when exposed to a magnetic field. This force stems

from a difference in magnetic free energy density

across the boundary and acts supplementary to a cur-

vature driving force. With or against the curvature

driving force it additionally impels each grain of a

TD

Levels: 2.0, 4.0, 6.0, 8.0,
(max 13.4)   10.0, 12.0

{0002} {0002}
RD

Levels: 2.0, 4.0, 6.0, 8.0,
(max 13.4)   10.0, 12.0

TD

Levels: 3.0, 6.0, 9.0
(max 18.3)  15.0, 18.0
Levels: 3.0, 6.0, 9.0
(max 18.3)  15.0, 18.0

RD

Levels: 3.0, 6.0, 9.0, 12.0,
(max 18.3)  15.0, 18.0

a b
Fig. 7 Simulated {0002} pole
figures after 600 s annealing
at 750 �C for a 2D Ti-
polycrystal (a) without field
and (b) in a magnetic field of
19.4 T (field direction is
indicated by a white cross)

Fig. 8 Computed grain
fractions in (a) {180�, 30�,
"/2} grain subset and (b) {0�,
30�, "/2} grain subset versus
annealing time at zero field
and in a field of 19.4 T
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polycrystal to grow or to shrink, depending on its ori-

entation and the orientation of its nearest neighbors

with respect to the field direction. Owing to the ori-

entation dependency of the magnetic driving force, a

magnetic field possesses a remarkable property to

produce preferred orientations during grain growth.

A theoretical analysis of the grain growth kinetics

reveals that the classical conditions for a grain to retain

its size stable—to have a size equal to the mean grain

size, as follows from the Hillert equation, or to possess

a topological class equal 6, as it follows from the von

Neumann–Mullins approach, are violated in the pres-

ence of an external magnetic field. The extended

Hillert equation reveals that for grains in favorable

energetic configurations the treshold grain size rises

compared to the mean grain size, but it decreases for

grains with higher magnetic energy. Analogously in an

extended von Neumann–Mullins approach, depending

on their orientation all grains including those with

topological class 6 become either advantaged or dis-

advantaged by a magnetic field. As a consequence

grains with topological class 6 do not remain stable in

the field, but either grow or shrink.

As it is experimentally demonstrated on polycrys-

talline zinc, titanium and zirconium sheet, the crystal-

lographic texture in magnetically anisotropic dia- or

paramagnetic materials can be effectively changed and

controlled by means of magnetic annealing. EBSD-

analysis revealed that the observed asymmetrical tex-

ture after magnetic annealing is due to a large extent to

a significant difference in the number of grains making

up different texture components.

The results of computer simulations of magnetically

affected grain growth in 2-D polycrystals are in a good

agreement with theoretical predictions and experi-

mental findings; a development of an asymmetrical

texture with a rising difference between grain fractions

in different texture components as well as a change of

the topological class of stable grains depending on their

orientations is convincingly demonstrated.
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